Auxiliar de Aritmetica, Algebra si Geometrie pentru clasa a VI-a

Auxiliar de Aritmetica, Algebra si Geometrie pentru clasa a VI-a

In stoc

 10.50  RON21.00  RON -50%
CITESTE CATEVA PAGINI

În anul şcolar 2008 – 2009 programa şcolară a suferit majore modificări fiind valabilă şi în anul şcolar 2014 – 2015 cu diferenţe nesemnificative. Evident, manualele alternative fiind complet depăşite sunt neutilizabile.
Intenţia declarată a autorilor este de a se alinia programei actuale, iar lucrarea elaborată se constituie într-un auxiliar ales de colegul nostru „rătăcit”, poate, printre atâtea culegeri de probleme, grupate după anul sau locul în care au fost propuse.
Lucrarea prezintă consideraţii teoretice la noţiunile de bază ale programei plecând de la situaţii cotidiene întâlnite de elev, prin modele de exerciţii şi probleme rezolvate, ce pot fi utilizate la sistematizarea şi aprofundarea cunoştinţelor, cât şi în activităţi opţionale.
Prezenta lucrare grupează elementele de conţinut ale programei şcolare actuale în unităţi de învăţare, cu respectarea logicii interne de dezvoltare a conceptelor matematice.
Pentru formarea competenţelor europene specifice studiului matematicii în gimnaziu, lucrarea a fost astfel concepută încât să contribuie la formarea obişnuinţei elevilor de a apela la concepte şi metode matematice în abordarea unor situaţii cotidiene sau pentru rezolvarea unor probleme practice.
Problemele sunt compartimentate pe capitole, unităţi de învăţare şi chiar pe lecţii cu rezolvări bine echilibrate. Pentru fiecare lecţie au fost selectate probleme reprezentative care contribuie la aprofundarea noţiunilor ce le conţin.
Problemele sunt variate şi de conţinut, fiind evitate cele artificial concepute după clişee sterile, cum se găsesc, din abundenţă, prin diverse culegeri. Lucrarea constituie un suport eficient pentru profesori, elevi şi părinţi, pentru o evaluare şi autoevaluare cât mai obiectivă, de aceea fiecare exerciţiu are specificată nota corespunzătoare.
De asemenea, lucrarea cuprinde 36 modele de teste, din care 4 variante de teză pe semestrul I, 6 variante de teză pe semestrul al II-lea, 8 teste pentru recapitulare finală, 3 teste iniţiale, cu itemi specifici intervalului de evaluare, astfel: se obţin 40 de puncte din itemi de nota 5; câte 20 de puncte din itemi de nota 7, respectiv 9; 10 puncte din itemi de nota 10 şi 10 puncte se acordă din oficiu.
În afara testelor clasice am introdus şi teste grilă şi cu răspuns deschis. La testele grilă elevul trebuie să aleagă răspunsul corect din variantele de răspunsuri date, ştiind că unul şi numai unul din răspunsuri este corect, iar la testele cu răspuns deschis trebuie completat spaţiul punctat cu răspunsul corect.
După prezentarea enunţurilor problemelor propuse urmează soluţii, indicaţii, răspunsuri şi comentarii.
Problemele asemănătoare cu precedentele au primit indicaţii parţiale sau numai răspunsurile de rigoare, lăsându-le elevilor posibilitatea de a-şi dovedi ingeniozitatea şi creativitatea prin găsirea unor soluţii deosebite.
În general, soluţiile prezentate nu sunt exhaustive, lăsând rezolvitorilor po­sibilitatea de a contribui efectiv la completări. Totuşi, în prezentarea unor soluţii, am avut în vedere rigurozitatea, insistând asupra cazurilor ce pot să apară în unele probleme în funcţie de parametrii pe care acestea îi conţin, dorind să formăm la elevi deprinderea de a căuta toate soluţiile unei probleme.
Suntem recunoscători şi adresăm mulţumirile noastre atât colegilor, părinţilor, cât şi elevilor care ne-au dat sugestii şi sfaturi competente, care ne-au condus la completarea lucrării.
  • Cuprins
  • ARITMETICĂ. ALGEBRĂ
  • Capitolul I. MULŢIMEA NUMERELOR NATURALE
  • Operaţii cu numere naturale
  • Reguli de calcul cu puteri. Compararea şi ordonarea puterilor
  • Divizor, multiplu. Criterii de divizibilitate cu 10, 2, 5, 3, 9
  • Numere prime şi numere compuse
  • Descompunerea numerelor naturale în produs de puteri de numere prime
  • Proprietăţi ale relaţiei de divizibilitate în 
  • Divizori comuni a două sau a mai multor numere naturale,
  • c.m.m.d.c; numere prime între ele
  • Multipli comuni a două sau mai multor numere naturale;
  • c.m.m.m.c.; relaţia dintre c.m.m.d.c. şi c.m.m.m.c.
  • Probleme aplicative care se rezolvă folosind divizibilitatea în 
  • Capitolul II. MULŢIMEA NUMERELOR RAŢIONALE POZITIVE, Q+
  • Fracţii echivalente; fracţie inductibilă; noţiunea de număr raţional; forme de scriere a unui număr raţional;   . Aducerea fracţiilor la un numitor comun. Compararea şi ordonarea numerelor raţionale
  • OPERAŢII CU NUMERE RAŢIONALE POZITIVE
  • Adunarea numerelor raţionale pozitive. Proprietăţi
  • Scăderea numerelor raţionale pozitive
  • Înmulţirea numerelor raţionale pozitive. Proprietăţi
  • Ridicarea la putere cu exponent natural a unui număr raţional pozitiv;
  • reguli de calcul cu puteri
  • Împărţirea numerelor raţionale pozitive
  • Ordinea efectuării operaţiilor cu numere raţionale pozitive
  • Media aritmetică ponderată a unor numere raţionale pozitive
  • Ecuaţii în mulţimea numerelor raţionale pozitive
  • Probleme care se rezolvă cu ajutorul ecuaţiilor
  • Capitolul III. RAPOARTE ŞI PROPORŢII
  • Rapoarte
  • Procente; probleme în care intervin procente
  • Proporţii; proprietatea fundamentală a proporţiilor; aflarea unui
  • termen necunoscut dintr-o proporţie; proporţii derivate
  • Mărimi direct proporţionale; regula de trei simplă; şir de rapoarte egale
  • Mărimi invers proporţionale. Regula de trei simplă
  • Elemente de organizare a datelor; reprezentarea datelor prin grafice
  • Experienţă aleatoare. Probă. Eveniment. Probabilităţi
  • Capitolul IV. NUMERE ÎNTREGI
  • Mulţimea numerelor întregi ; opusul unui număr întreg;
  • reprezentarea pe axă a numerelor întregi; valoarea absolută (modulul);
  • compararea şi ordonarea numerelor întregi
  • OPERAŢII ÎN MULŢIMEA 
  • Adunarea numerelor întregi; proprietăţi
  • Scăderea numerelor întregi
  • Înmulţirea numerelor întregi; proprietăţi;
  • mulţimea multiplilor unui număr întreg
  • Împărţirea numerelor întregi când deîmpărţitul este multiplu al împărţitorului; mulţimea divizorilor unui număr întreg
  • Puterea unui număr întreg cu exponent număr natural; reguli de calcul cu puteri ....
  • Ordinea efectuării operaţiilor şi folosirea parantezelor
  • Ecuaţii în ; probleme care se rezolvă cu ajutorul ecuaţiilor
  • Inecuaţii în mulţimea numerelor întregi .
  • GEOMETRIE
  • Capitolul I
  • Punct, dreaptă, plan, semiplan, semidreaptă, segment (descriere, reprezentare, notaţii). Poziţiile relative ale unui punct faţă de o dreaptă; puncte coliniare;
  • „prin două puncte distincte trece o dreaptă şi numai una”...............................................
  • Poziţiile relative a două drepte: drepte concurente, drepte paralele.................................
  • Lungimea unui segment; distanţa dintre două puncte. Segmente congruente, construcţia unui segment congruent cu un segment dat,
  • mijlocul unui segment, simetricul unui punct faţă de un punct .
  • Capitolul II. UNGHIURI
  • Definiţie, notaţii, elemente; interiorul unui unghi; exteriorul unui unghi; unghi nul; unghi cu laturile în prelungire
  • Măsurarea unghiurilor cu raportorul; unghiuri congruente;
  • unghi drept, unghi ascuţit, unghi obtuz
  • Calcule cu măsuri de unghiuri exprimate în grade şi minute sexagesimale. Unghiuri suplementare, unghiuri complementare
  • Unghiuri adiacente; bisectoarea unui unghi
  • Unghiuri opuse la vârf, congruenţa lor; unghiuri formate
  • în jurul unui punct, suma măsurilor lor ..
  • Capitolul III. CONGRUENŢA TRIUNGHIURILOR
  • Triunghi. Clasificare. Perimetrul triunghiului. Unghi exterior unui triunghi
  • Construcţia triunghiurilor
  • Congruenţa triunghiurilor; metoda triunghiurilor congruente
  • Capitolul IV. PERPENDICULARITATE
  • Drepte perpendiculare. Distanţa de la un punct la o dreaptă
  • Construcţia şi congruenţa triunghiurilor dreptunghice
  • Mediatoarea unui segment. Concurenţa mediatoarelor laturilor unui triunghi
  • Simetria faţă de o dreaptă
  • Proprietatea punctelor de pe bisectoarea unui unghi.
  • Concurenţa bisectoarelor unghiurilor unui triunghi
  • Capitolul V. PARALELISM
  • Drepte paralele. Axioma paralelelor. Criterii de paralelism
  • (unghiuri formate de două drepte paralele cu o secantă
  • Capitolul VI. PROPRIETĂŢI ALE TRIUNGHIURILOR
  • Suma măsurilor unghiurilor unui triunghi;
  • unghi exterior unui triunghi; teorema unghiului exterior
  • Înălţimea unui triunghi. Concurenţa înălţimilor unui triunghi
  • Aria unui triunghi (intuitiv pe reţele de pătrate)
  • Mediana în triunghi. Concurenţa medianelor unui triunghi
  • Proprietăţi ale triunghiului isoscel (unghiuri, linii importante, simetrie
  • Proprietăţi ale triunghiul echilateral (unghiuri, linii importante, simetrie)
  • Proprietăţi ale triunghiului dreptunghic
  • Capitolul VII. VARIANTE DE SUBIECTE PENTRU LUCRAREA SCRISĂ PE SEMESTRUL I
  • VARIANTE DE SUBIECTE PENTRU LUCRAREA SCRISĂ PE SEMESTRUL AL II-LEA
  • Capitolul VIII. Recapitulare finală
  • rezultate. indicaţii. soluţii. comentarii
  • Bibliografie

Review-uri: 0